

May 14th 2014

Copper-Rich Magmatic Ni-Cu-PGE deposits

David R. Burrows

Copper-Rich Magmatic Ni-Cu-PGE deposits Outline of Talk

- Introduction and characteristics
- Examine key examples of Cu-rich magmatic systems to highlight Cu-enrichment processes
 - **Sudbury**: FC processes-maximized as slow cooling
 - Noril'sk: High R factor and sulphide FC
 - Voisey's Bay: High Cu, rel. low PGEs ores; limited FC
 - Mid Continental Rift in USA and Canada
 - **Duluth Complex**: Very Cu-rich mineralization
 - Eagle deposit: Small high grade deposit
- Summary of exploration criteria for Cu-rich magmatic mineralization
- Potential in Brazil for Cu-rich magmatic Cu-Ni-PGE deposits

1

Copper-Rich Magmatic Ni-Cu-PGE deposits

Magmatic Ni-Cu-PGE deposits General Model From Begg

From Begg et al., 2010, Econ. Geol., 105, 1057-1070

Low-MgO (Mafic) style

High-MgO (Ultramafic) style

- 1. Mantle plume impact and flow towards areas of thinner lithosphere
- 2. Decompression melting of plume at shallower levels (sulfur undersaturated magmas)
- 3. Transfer of melts into the (upper) crustal environment via active translithospheric faults and an interconnected intrusion (sills) network
- 4. Variable interaction of melts with crust (sulfur saturation)
- 5. Nickel sulphide precipitation and accumulation

3

Why are some magmatic deposits richer in copper than others?

- 1. Composition of source, and conditions during melting and degree of partial melting
- 2. Degree of fractional crystallization (FC) \pm crustal contamination prior to sulphide segregation
- 3. The amount of silicate magma that reacts with the sulphide melt (R factor)
- 4. Degree of FC of sulphides <u>after</u> it has segregated from magma

4

Cu-rich magmatic Ni-Cu-PGE deposits Distribution of Cu-rich variety

Cu-rich magmatic Ni-Cu-PGE deposits Top magmatic deposit producers (2007-2008)

Deposit	Location	Operator(s)	Cu pa (tonnes)	Cu Grade
Noril'sk	Taimyr Peninsula, Russia	Nori'sk Nickel	364,400	2.60%
Sudbury	Ontario, Canada	Vale Glencore	134,000	1.27%
Voisey's Bay	Labrador, Canada	Vale	55,400	1.53%
Jinchuan	Gansu Province, PRC	Jinchuan Non- Ferrous Metal Corp.	52,000	0.66%
Selibi-Phikwe	Botswana		24,289	0.55%
Caraiba	Curaca Valley, Bahia, Brazil		22,720	1.00%
Pechenga	Kola Peninsula, Russia	Noril'sk Nickel	18,000	0.35%
Phoenix	Botswana		13,400	0.18%
Raglan	Nunavik, Canada	Glencore	7,134	0.68%
Aguablanca	Extremadura, Spain		5,484	0.40%
Santa Rita (Mirabela)	Bahia State, Brazil		3,239	0.13%
Nkomati	RSA		2,300	0.13%
Montcalm	Ontario, Canada	Glencore	1,179	0.61%
Karatungk (Kalatongke)	Xinjiang, China			1.30%
Total			703,545	0.81%

Cu-rich magmatic Ni-Cu-PGE deposits Significant Producers

VALE

SIMEXMIN 2014 Symposium May 14, 2014

Cu-rich magmatic Ni-Cu-PGE deposits Value from different metals

Sudbury Igneous Complex Location of different Deposit Types

- Segregation of sulfide melt (1100°C) and Early crystallization of MSS
- Fractional crystallization of MSS

 → pyrrhotite rich cumulate (Ni)
 → Cu-rich residual (liquid) melt
 (Pd, Pt, Ag, Au, Bi etc. partition to late melt)
- Crystallization of ISS (\rightarrow cp ± pn)
- Late CI-rich brines from the latestage melt or from an exsolved magmatic fluid that remobilizes metals (Pt, Pd, Ag, Au, As, Bi, Te)

Sudbury Footwall Mineralization Ore types in 153 ore body, Coleman mine

Sudbury Footwall Cooper mineralization Chalcopyrite Vein, North zone, Norman property (KGHM)

Sudbury Footwall Cooper mineralization Irregular chalcopyrite-PGE veins in 153 Coleman ore body

Sudbury Basin Vale Exploration Results from Victor / Capre area

Victor Footwall and Contact Ore bodies

North facing sketch section

Old Victor BH1294240 Mineralization from 268.4 to 288 m 2.74% Ni, 1.68% Cu, 0.89 g/t TPM over 19.6m (core length)

VALE

SIMEXMIN 2014 Symposium May 14, 2014

Victor property 14N FW Zone Drill hole MAC091Q

Estimated 10 % Cu, 2 % Ni over 30.4 m starting at 840m

Victor Footwall 14N – Longitudinal (Looking East) Contoured Ore Thickness

Victor Footwall Cu zone BH MAC078F

Massive sulphide between 2533.9 - 2545.6m

1.9 % Ni, 9.1% Cu, 7.8 g/t TPM over 46.4m Including 4.9% Ni, 24.3% Cu, 20.8 g/t TPM over 11.7m (core length)

Victor Footwall Cu zone BH MAC078G

Mineralization between 2548.4 – 2631.7m 1.9 % Ni, 11.9 % Cu, 8 g/t TPM over 83.3m Including 2.8% Ni, 26.1 % Cu, 15 g/t TPM over 13.1m (core length)

Noril'sk-Talnakh Area Views towards Talnakh and Kharaelakh area

Kharaelakh and Talnakh Intrusions

After Naldrett et al. (1992)

Oktyabrsky deposit, 600L, Talnakh Cubanite-mooihoekite-pentlandite basal ores

- Two different processes operating at Noril'sk
- Very high R factors (early sulphides enriched in PGEs, Cu and Ni)
- 2. Late stage FC and fluid-assisted separation of Cu-PGEs (esp. Pd) into higher "Cuprous" zones

Cuprous replacement ores from Komsomolsky deposit

Vale's Voisey's Bay Deposit, Labrador 3D representation of VB conduit system (5km) looking SW

- Associated with troctolites (olivine gabbro) part of 1.34 Ga anorthositic Nain Plutonic Suite straddling a 1.8 Ga suture
- Sulphides moved up series of conduit dikes from a series of "staging chambers"- Cu enriched, PGE-depleted

Voisey's Bay Deposit, Labrador

Glacially-polished massive sulphides prior to mining

32 Mt at 1.68 % Cu, 2.83 % Ni and 0.12 % Co (55ktpa Cu)- 250m

Voisey's Bay Ovoid zone Mineralogical and chemical zonation

- Ovoid broadly zones towards a upper central core with elevated Cu (with cubanite), Pt-Pd, Pb and Ag
- No major segregation of Cu-rich residual sulphide melts

Mid Continental Rift (MCR)- Keeweenawan Location and Geological setting

Duluth Complex, Minnesota Geology Map

Duluth Complex Mineralization

- Over 4.4 Billion tonnes of diss. Ni-Cu-PGE mineralization at ~0.6% Cu and 0.2% Ni
- 12 major deposits close to the basal contacts over 55 km in basal troctolites
- Nokomis, Maturi, Birch Lake, and Dunka Pit deposits in the South Kawishiwi intrusion
- Mesaba and NorthMet deposits in the Partridge River intrusion

Mesaba Deposit (Teck) Section L 3600 West looking ENE showing mineralization

Mesaba Deposit (Teck)

Typical coarse disseminated mineralization

- Immense Resource; processing issues; potential hydromet. options
- Teck, Antofagasta, Glencore all involved trying to optimize recovery

Eagle deposit, Michigan Western section through deposit

From Rossell, PRC Cu-Ni workshop, Duluth, Oct. 2013; Ding et al., 2011

VALE

Eagle deposit, Michigan Cu-rich net-textured sulphides

DDH 03EA-034, 220.7m: 0.41% Cu, 0.75 % Ni, 3.16% S

From Rossell, PRC Cu-Ni workshop, Duluth, Oct. 2013

Eagle deposit, Michigan Cu-poor (lower) and Cu-rich massive sulphides

Eagle deposit, Michigan Chalcopyrite veinlets in footwall sediments in 03EA-030,

Why are some magmatic deposits richer in copper than others? 320 24 Y_{Cu} (R model) Ε

- 1. Partial Melting P of pyroxenitc sou Ni (wt%) component from
- 2. FC prior to sulph magmas (gabrro) sulphide saturation
- 3. Silicate-sulphide volumes of magn sulphides resulti

4. FC of MSS after so uphide segregation: drifting al in hot, slowing cooling systems (Norilsk, Sudbury) and to lesser extent in Boortant in Eagle an d Voisevä's Bay 20 40 60 80

Wt% Magma Fractionated

Magmatic Ni-Cu-PGE deposits Cu-rich varieties related to Low MgO (Mafic) intrusions

- 1. Mantle **plume** impact and flow towards areas of thinner lithosphere
- 2. Decompression melting of plume at shallower levels- LIP
- 3. Transfer of melts into the (upper) crustal environment via trans-lithospheric faults at terrane boundaries and an interconnected intrusion-sills networks
- 4. Variable interaction of melts with crust
- 5. Nickel sulphide segregation and accumulation
- **Small** intrusions (chonoliths) with ferropicritic and/or gabbroic compositions-often not magnetic
- Must be at right erosional level, or use EM to look beneath volcanic cover and/or look for metal depletion/contamination in coeval volcanics
- Surficial geochemistry effective but small footprint- pay attention to Cu + PGE anomalies (rather than Ni that reflects MUM intrusion)

Distribution of larger Ni-Cu-PGE deposits and camps Paucity in Brazil

Santa Rita only large Ni-Cu deposits currently known in Brazil

Magmatic Ni-Cu-PGE deposits in Brasil

A few potential exploration areas

Paraná (and Parnaiba) Basins

- 120 Ma CAMP LIP related to formation of central Atlantic ocean
- Flood basalts cover ~ 1.4 million km² in southern Brasil; average thickness 500 m in series of sub-basins (high R factor, dynamic conduits)
- Flood basalts overlying sediments with potential sulphur sources (S-sat.)
- MgO-rich sills known (e.g. Lomba Grande), lots of available regional data

Thank you

David Burrows Chief Geologist Copper and Nickel

Global Exploration DIPM

Email: david.burrows@vale.com

For a world with new values.

